If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-12=27
We move all terms to the left:
3x^2+6x-12-(27)=0
We add all the numbers together, and all the variables
3x^2+6x-39=0
a = 3; b = 6; c = -39;
Δ = b2-4ac
Δ = 62-4·3·(-39)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{14}}{2*3}=\frac{-6-6\sqrt{14}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{14}}{2*3}=\frac{-6+6\sqrt{14}}{6} $
| 40+90+11x+6=180 | | X^2+4x-186=0 | | z/10+90=100 | | 80+45+3x+19=180 | | 80+50+6x+8=180 | | -30=-4+3x-9x | | 50=12k-11k | | 24+17m=143 | | 3x2.5=x | | 2/3y-5/4y+8=-11/12-4 | | 60x-42.95=57.95 | | x+1,2=2x | | 23-2x=7-4x | | 8r+8=40 | | j+11=23 | | 4x-9x-2=10-5x | | 60+40+7x+3=180 | | 2/3h=24 | | 10x-120=-100 | | 6y+1=34 | | 1/2m-6=4 | | 4x+3x-5+45=180 | | j/5+10=22 | | 1+4(5-2x)-6x=-2(6x-1)+18 | | 7=7d-8 | | 5x+22=4x+36 | | 3(2x+5)=x+10 | | -7+5-x=4x-2= | | 5+24+11=g+9g-26 | | 5n-3=3n-12 | | 14(x+3)=14x+21 | | 4u=76u= |